OnTheFly
- class pyR2D2.OnTheFly(data)[source]
Bases:
_BaseReader
Class for on-the-fly analysis data Mean, RMS, and correlation are done in longitudinal or z directions.
pyR2D2.Data class can access this class as
pyR2D2.Data.vc
- Variables:
data (numpy.ndarray, float) – pyR2D2.Data instance
su (numpy.ndarray, float) – number of grid points of upflows
sd (numpy.ndarray, float) – number of grid points of downflows
rom (numpy.ndarray, float) – mean density
vxm (numpy.ndarray, float) – mean vx
vym (numpy.ndarray, float) – mean vy
vzm (numpy.ndarray, float) – mean vz
rxm (numpy.ndarray, float) – mean ro*vx
rym (numpy.ndarray, float) – mean ro*vy
rzm (numpy.ndarray, float) – mean ro*vz
bxm (numpy.ndarray, float) – mean bx
bym (numpy.ndarray, float) – mean by
bzm (numpy.ndarray, float) – mean bz
sem (numpy.ndarray, float) – mean entropy / unit mass
tem (numpy.ndarray, float) – mean temperature
prm (numpy.ndarray, float) – mean pressure
enm (numpy.ndarray, float) – mean internal energy / unit mass
opm (numpy.ndarray, float) – mean opacity
tum (numpy.ndarray, float) – mean optical depth
wxm (numpy.ndarray, float) – mean x vorticity
wym (numpy.ndarray, float) – mean y vorticity
wzm (numpy.ndarray, float) – mean z vorticity
cxm (numpy.ndarray, float) – mean x current
cym (numpy.ndarray, float) – mean y current
czm (numpy.ndarray, float) – mean z current
hkm (numpy.ndarray, float) – mean kinetic helicity
hcm (numpy.ndarray, float) – mean current helicity
wdm (numpy.ndarray, float) – mean work done by magnetic pressure
wcm (numpy.ndarray, float) – mean work done by compression
ekm (numpy.ndarray, float) – mean kinetic energy
emm (numpy.ndarray, float) – mean magnetic energy
rorms (numpy.ndarray, float) – rms density
vxrms (numpy.ndarray, float) – rms vx
vyrms (numpy.ndarray, float) – rms vy
vzrms (numpy.ndarray, float) – rms vz
bxrms (numpy.ndarray, float) – rms bx
byrms (numpy.ndarray, float) – rms by
bzrms (numpy.ndarray, float) – rms bz
serms (numpy.ndarray, float) – rms entropy / unit mass
terms (numpy.ndarray, float) – rms temperature
prrms (numpy.ndarray, float) – rms pressure
enrms (numpy.ndarray, float) – rms internal energy / unit mass
rormsu (numpy.ndarray, float) – rms density of upflows
vxrmsu (numpy.ndarray, float) – rms vx of upflows
vyrmsu (numpy.ndarray, float) – rms vy of upflows
vzrmsu (numpy.ndarray, float) – rms vz of upflows
bxrmsu (numpy.ndarray, float) – rms bx of upflows
byrmsu (numpy.ndarray, float) – rms by of upflows
bzrmsu (numpy.ndarray, float) – rms bz of upflows
sermsu (numpy.ndarray, float) – rms entropy / unit mass of upflows
termsu (numpy.ndarray, float) – rms temperature of upflows
prrmsu (numpy.ndarray, float) – rms pressure of upflows
enrmsu (numpy.ndarray, float) – rms internal energy / unit mass of upflows
rormsd (numpy.ndarray, float) – rms density of downflows
vxrmsd (numpy.ndarray, float) – rms vx of downflows
vyrmsd (numpy.ndarray, float) – rms vy of downflows
vzrmsd (numpy.ndarray, float) – rms vz of downflows
bxrmsd (numpy.ndarray, float) – rms bx of downflows
byrmsd (numpy.ndarray, float) – rms by of downflows
bzrmsd (numpy.ndarray, float) – rms bz of downflows
sermsd (numpy.ndarray, float) – rms entropy / unit mass of downflows
termsd (numpy.ndarray, float) – rms temperature of downflows
prrmsd (numpy.ndarray, float) – rms pressure of downflows
enrmsd (numpy.ndarray, float) – rms internal energy / unit mass of downflows
vxyco (numpy.ndarray, float) – vx*vy correlation
vxzco (numpy.ndarray, float) – vx*vz correlation
vyzco (numpy.ndarray, float) – vy*vz correlation
bxyco (numpy.ndarray, float) – bx*by correlation
bxzco (numpy.ndarray, float) – bx*bz correlation
byzco (numpy.ndarray, float) – by*bz correlation
vxbxco (numpy.ndarray, float) – vx*bx correlation
vxbyco (numpy.ndarray, float) – vx*by correlation
vxbzco (numpy.ndarray, float) – vx*bz correlation
vybxco (numpy.ndarray, float) – vy*bx correlation
vybyco (numpy.ndarray, float) – vy*by correlation
vybzco (numpy.ndarray, float) – vy*bz correlation
vzbxco (numpy.ndarray, float) – vz*bx correlation
vzbyco (numpy.ndarray, float) – vz*by correlation
vzbzco (numpy.ndarray, float) – vz*bz correlation
vxwxco (numpy.ndarray, float) – vx*wx correlation (w mean vorticity)
vxwyco (numpy.ndarray, float) – vx*wy correlation
vxwzco (numpy.ndarray, float) – vx*wz correlation
vywxco (numpy.ndarray, float) – vy*wx correlation
vywyco (numpy.ndarray, float) – vy*wy correlation
vywzco (numpy.ndarray, float) – vy*wz correlation
vzwxco (numpy.ndarray, float) – vz*wx correlation
vzwyco (numpy.ndarray, float) – vz*wy correlation
vzwzco (numpy.ndarray, float) – vz*wz correlation
ro_xy (numpy.ndarray, float) – xy slice of density at kc
vx_xy (numpy.ndarray, float) – xy slice of vx at kc
vy_xy (numpy.ndarray, float) – xy slice of vy at kc
vz_xy (numpy.ndarray, float) – xy slice of vz at kc
bx_xy (numpy.ndarray, float) – xy slice of bx at kc
by_xy (numpy.ndarray, float) – xy slice of by at kc
bz_xy (numpy.ndarray, float) – xy slice of bz at kc
se_xy (numpy.ndarray, float) – xy slice of entropy at kc
pr_xy (numpy.ndarray, float) – xy slice of pressure at kc
te_xy (numpy.ndarray, float) – xy slice of temperature at kc
tu_xy (numpy.ndarray, float) – xy slice of optical depth at kc
en_xy (numpy.ndarray, float) – xy slice of internal energy at kc
op_xy (numpy.ndarray, float) – xy slice of opacity at kc
ro_xz (numpy.ndarray, float) – xz slice of density at jc
vx_xz (numpy.ndarray, float) – xz slice of vx at jc
vy_xz (numpy.ndarray, float) – xz slice of vy at jc
vz_xz (numpy.ndarray, float) – xz slice of vz at jc
bx_xz (numpy.ndarray, float) – xz slice of bx at jc
by_xz (numpy.ndarray, float) – xz slice of by at jc
bz_xz (numpy.ndarray, float) – xz slice of bz at jc
se_xz (numpy.ndarray, float) – xz slice of entropy at jc
pr_xz (numpy.ndarray, float) – xz slice of pressure at jc
te_xz (numpy.ndarray, float) – xz slice of temperature at jc
tu_xz (numpy.ndarray, float) – xz slice of optical depth at jc
en_xz (numpy.ndarray, float) – xz slice of internal energy at jc
op_xz (numpy.ndarray, float) – xz slice of opacity at jc
fe (numpy.ndarray, float) – mean enthalpy flux
fd (numpy.ndarray, float) – mean conductive flux
fk (numpy.ndarray, float) – mean kinetic flux
fm (numpy.ndarray, float) – mean Poynting flux
fr (numpy.ndarray, float) – mean radiative flux
fvxl (numpy.ndarray, float) – SH expansion of vx
fvyl (numpy.ndarray, float) – SH expansion of vy
fvzl (numpy.ndarray, float) – SH expansion of vz
fbxl (numpy.ndarray, float) – SH expansion of bx
fbyl (numpy.ndarray, float) – SH expansion of by
fbzl (numpy.ndarray, float) – SH expansion of bz
fsel (numpy.ndarray, float) – SH expansion of entropy
fvxm (numpy.ndarray, float) – SH expansion of vx with m = 0
fvym (numpy.ndarray, float) – SH expansion of vy with m = 0
fvzm (numpy.ndarray, float) – SH expansion of vz with m = 0
fbxm (numpy.ndarray, float) – SH expansion of bx with m = 0
fbym (numpy.ndarray, float) – SH expansion of by with m = 0
fbzm (numpy.ndarray, float) – SH expansion of bz with m = 0
fsem (numpy.ndarray, float) – SH expansion of entropy with m = 0
Methods Summary
read
(n)Reads on the fly analysis data from fortran.
Methods Documentation